Search results for "high pressure laminate"

Placeholder Alt Text

Flex or Combust

C.F. Møller's mass-timber vision for Robin Hood Gardens stifled by ban on combustible cladding
C.F. Møller has designed a swath of social housing for an upcoming development called Blackwall Reach atop east London’s famous Robin Hood Gardens, a demolished series of brutalist blocks designed in the 1960s by renowned British architects, Alison and Peter Smithson. Initial plans released in 2017 indicated that the Danish firm would create a 330-unit complex featuring cross-laminated timber (CLT), a resourceful construction method that’s been gaining wide acceptance in the United Kingdom. But a recent government ban on combustible cladding materials has put plans for the engineered product in jeopardy, reported Architects' Journal. The new legislation, which was enacted late last December, was introduced after the Grenfell Tower fire of June 2017 in which one of West London’s tallest residential towers burned down, claiming 72 lives. After a pressure-filled campaign from Grenfell United, a group of survivors and victims’ families, the U.K.’s Ministry of Housing, Communities & Local Government introduced a new building safety code last summer that would prohibit the use of cladding materials holding a European fire rating of less than A1 or A2. Per the ruling, architects and developers cannot use such products in the external wall construction of schools, high-rise homes, hospitals, and care facilities, reported AJ. The ruling also calls for local municipalities to begin removing unsafe aluminum composite material (ACM) cladding on existing structures taller than 18 meters (about six stories). Though CLT is not an ACM and has been proven to perform well under fire load, it contains wood and is being cited as hazardous to lawmakers. CF Møller’s affordable housing design for Blackwall Reach is phase 3 of a larger, controversial regeneration plan of Robin Hood Gardens, which the London-based practice Metropolitan Workshop is overseeing. Phase 1b and Phase 2 includes the build-out of 268 homes across four buildings designed by Haworth Tompkins and Metropolitan Workshop. These structures, currently under construction, are slated for completion this year and in 2021. Phase 3 construction is expected to start following the move-in of residents to the new buildings. Overall, the 20-acre Blackwall Reach project is set to replace 250 high-rise homes within the area with a total of 1,575 new units. Swan Housing Association, a community development and management organization, is developing the site alongside the London Borough of Tower Hamlets and the Greater London Authority. While this is only one project suffering a design setback thanks to the new ban on combustible cladding materials, it signals what could become a major issue with the use of CLT products on future tall buildings in the U.K. and across Europe. Already a world leader in mass timber manufacturing and construction, it’s unclear how the U.K. will now move forward in creating large-scale projects using the material. The ban has recently received major criticism from industry leaders like the Timber Trade Federation and architects who worry about the environmental cost of restricting timber in large construction. The Royal British Institute of Architects came out in support of the ban in November but recommends it only apply to specific cladding applications.
Placeholder Alt Text

California Dreaming

Facades+ San Francisco will dive into the Bay Area's exciting technological trends
facadeplus_logo1
Brought to you with support from
The San Francisco Bay Area is nourishing one of the country's most active architecture scenes. Fueled by a booming technology sector, rapid population and commercial growth are delivering exciting new projects to the region. On February 7, The Architect's Newspaper is gathering leading local and California-based design practices for Facades+ San Francisco, a conference on innovative enclosure projects across the city, state, and country. Participants include EHDD, BuroHappold Engineering, CallisonRTKL, CO Architects, Heintges Consulting Architects & Engineers, and David Baker Architects. Joe Valerio, founding principal of Valerio Dewalt Train Associates (VDT), will co-chair the half-day symposium. AN interviewed Valerio about what VDT is working on and the firm's perspective on San Francisco's architectural trends. The Architect's Newspaper: San Francisco is arguably the nation's leading technological hub. How do you see this role impacting the architectural development of the city, and what do you perceive to be the most exciting facade trends in San Francisco today? Joe Valerio: Perhaps, the pressure that technology companies are creating on the building sector will finally lead to real innovation in how we build things. The San Francisco building sector does not have the capacity to move forward using conventional means. I believe that continual innovation will help the city catch up to its vast demand. It’s an exciting time for design in San Francisco. With technology evolving at such a rapid rate, it has been interesting to see how it is beginning to manifest itself in architecture, both physically and experientially. For instance, in the physical sense, buildings like the de Young Museum or the Transbay Terminal are utilizing parametric modeling to create interesting forms and textures with metal mesh. Faceted glass is also being implemented in interesting ways in high-rise projects, such as the LinkedIn headquarters or the Oceanwide Center. But on the experiential side, digital is becoming a new palette for architectural design. The Salesforce lobby, for example, uses digital projection mapping to draw people in from the street. Its translucent facade almost disappears from view, making the lobby feel like its extension. This is something that we have been experimenting with in our own work, in projects such as Art on theMart in Chicago or the YouTube lobby in San Bruno. What projects is VDT working on, and what innovative enclosure practices are being used? JV: We are developing a graduate student village for Vanderbilt University in Nashville, with our partners at Lend Lease Communities, and are looking at a wide range of modular and prefabricated construction techniques to meet the speed at which we need to deliver this project. New modular techniques that implement cross-laminated timber and steel into their modules are allowing us to go higher than the five stories limited by wood stick construction. We’re also implementing modular prefabricated cold-formed steel panel systems for quick assembly on site. Universities present tremendous opportunities in housing, and we find that embracing challenging parameters leads to very exciting outcomes. VDT is located in multiple cities across the country; what are the particular challenges and benefits of working in San Francisco? JV: One of the most exciting aspects of working in San Francisco is our client base. We work with companies that are constantly pushing the boundaries of technology, and for us, finding new ways to meet their needs with architecture is a thrilling prospect. Quite often, our work in the city deals with very interesting pre-existing buildings, such as in the case of Adobe Town Hall. Here we were challenged to both expand and reinvent the company’s dining experience all the while preserving a building that’s listed as a historic landmark. Its previous function as a tool factory became the driving force behind a new design, conceptually celebrating culinary tools developed by their new chef, and digital tools that Adobe continues to develop to this day. It’s opportunities like this that constantly pique our interest in San Francisco. But on the other side of the coin, having such a highly innovative and skilled architecture community has created a severe labor shortage in the city—a constant reminder of how thankful we are to have such a talented team. Is there a particular technique or materials that VDT is experimenting with? JV: There has always been a drive to bring new materials into our enclosures. Yet these systems are still dominated by old techniques and primitive materials such as glass. We have experimented with new materials such as ETFE, and we would forecast that assembling these old materials in innovative ways is the path forward. Remember the iPhone has a glass screen. Additionally, cross-laminated timber (CLT) continues to show a lot of promise. We have been working with a company on modular prefabricated CLT housing at a larger scale, and we’re excited to see how we can begin to leverage cost and design with new techniques. Further information regarding Facades+ San Francisco may be found here.
Placeholder Alt Text

Concrete Jungle

New timber research finds exciting potential in steel and concrete composites
With mass timber projects on the rise around the United State, Skidmore, Owings & Merrill (SOM) and Oregon State University (OSU) have partnered to produce two new reports on how timber buildings can overcome their technical limitations by integrating steel and concrete. The new composite systems being proposed would allow timber construction to rise higher than before, with longer floor spans. The OSU Testing Report, released earlier this month, looked into the possibility of combining cross-laminated timber (CLT) floor systems with a concrete topper, to improve the strength of the flooring as well as lengthen its span. To accurately represent real-world conditions, the SOM team first drew up plans for a “typical” 11-story residential building and indicated where the wood columns would normally be. With the floor span determined, the CLT flooring was stress tested for load, bending, cracking and shearing, before and after the application of a concrete slab. A 2.25-inch thick concrete layer was applied over a 6.75-inch thick CLT floor for the experiment. After testing smaller, individual sections, an eight-foot-by-36-foot full-sized mockup was created and subjected to load testing, only failing after engineers applied eight times the normal service load, or around 82,000 pounds of pressure. One complicating factor is that CLT can be charred for a higher fire rating at the expense of its strength, and any real-world application of CLT would need to be thicker than in testing conditions. Still, the results are a promising first step to increasing floor spans in timber buildings as well as improving their acoustic properties. The second report was produced in conjunction with the American Institute of Steel Construction (AISC) and examined how steel framing can best be integrated with timber floor systems. Because steel framing can span much greater distances than timber with smaller columns, and because CLT is lighter than concrete, a building that uses both should get the best of both worlds. In SOM’s modeling, this combination model was equally as strong as a steel and concrete building while offering window bays of the same size as a typical residential building. Ideally, high-rise timber construction of the future would combine both of these techniques, as the concrete slab topper adds extra seismic protection. With timber construction offering the potential for more sustainable, durable and quickly assembled towers, hybrid research could be a stepping stone towards bringing mass timber construction into the mainstream. All of SOM’s timber research reports can be found here.
Placeholder Alt Text

Turntable Lab

SITU Studio crafts a uniquely flexible display system for a New York City vinyl record and audiophile store

Despite the recent resurgence in vinyl record sales, brick-and-mortar music retail remains a challenging business. New York City’s Turntable Lab—which sells vinyl, high-end audiophile equipment, and merchandise, catering to professional DJs and casual listeners alike—had successfully graduated from its small starting location near the Cooper Union to a larger, 1,200-square-foot space nearby. But Turntable’s owners knew their store needed to be nimble to survive. “Products always change…how you display things, where you might need to move things around. Maximum flexibility was what we were shooting for,” said Turntable Lab partner David Azzoni. The new store required that adaptability, but the owners didn’t want to lose the gritty basement feel of the old location.

They turned to Brooklyn-based interdisciplinary firm SITU Studio; the two teams had already collaborated to design a no-frills, flat-pack turntable stand that was successfully Kickstarted. Aleksey Lukyanov-Cherny, partner at SITU Studio, said the firm looked to DIY sources for inspiration for the store. “The brilliant detail: It’s a cleat. It’s actually something very straightforward, something your DIY handyman at home will build in his garage for tools,” he explained. The cleats run throughout the space, supporting around 10 different sets of brackets, hooks, and rails, all of which hold stands, shelves, and display inserts.

This system allows for extreme flexibility, but SITU Studio had to work hard to refine the cleat, ensuring that the racks would be secure without requiring tools or extensive force to change them around. Turntable Lab also visited SITU Studio’s workshop throughout the design process, bringing samples of products, to measure what dimensions and displays worked best. “We spent a lot of time just drawing and cutting these things out, playing with just the round-overs, the radiuses…there was a lot of massaging radiuses,” Lukyanov-Cherny recalled. One major decision was to cut out the center of the display brackets, thereby keeping the cases visually open. “It just flows,” said Azzoni.

SITU Studio selected clear finished and untreated Baltic birch plywood for the entire system, with high-pressure laminate for its heavily used surfaces. The plywood—CNC-milled into shape—retains the old shop’s raw, utilitarian feel but balances it with clean lines. And Turntable Lab’s owners couldn’t be happier with the result. Armed with a basic set of display units, they can easily swap out products and how they’re displayed. In the back of the store, each vinyl storage/display unit rolls on wheels and can be moved to make space for events.

Parked among the vinyl records and T-shirts is the old store’s timeworn turntable stand, still used by DJs for in-store concerts. Its plywood has weathered darkly with use, and it sharply contrasts with the fresh plywood around it. But it won’t be the only aged one for long.

“These things can take a beating; you don’t want to refine things that people will be touching. You want to think about materiality and how it ages over time,” Lukyanov-Cherny said. “Eventually,” he added, gesturing from the new plywood displays to the old turntable stand, “they’re all gonna look like this!”

Placeholder Alt Text

Not Your Grandad's Passive Design

Passive-Aggressive design: When sustainability radically shapes architecture

This article is part of  The Architect’s Newspaper’s “Passive Aggressive” feature on passive design strategies. Not to be confused with “Passivhaus” or “Passive House” certification, passive design strategies such as solar chimneys, trombe walls, solar orientation, and overhangs, rely on scheme rather than technology to respond to their environmental contexts. Today, architects are more concerned with sustainability than ever, and new takes on old passive techniques are not only responsible, but can produce architecture that expresses sustainable features through formal exuberance. We call it “passive-aggressive.” In this feature, we examine three components—diagram, envelope, and material—where designers are marrying form and performance. We also look back at the unexpected history of passive-aggressive architecture, talk with passive-aggressive architects, and check out a passive-aggressive house. More “Passive Aggressive” articles are listed at the bottom of the page!

Diagram

The promise of architecturally considered, environmentally conscious buildings that are more than exercises in technological prosthetics is taking shape around the world. Sustainable design can be achieved without subjugating space, form, experience, and aesthetics, concepts that often end up subservient to green concerns. Even offices are moving beyond the often-gauche addition of solar panels and sun shades to typical building typologies. To do so, form is playing an important role in achieving sustainability goals, and a new crop of spatially and formally exuberant projects is being realized. The result is a series of buildings that neither perform—or look—like anything we have seen before.

Perhaps the best test of a project’s sustainability aspirations is an extreme climate. Drastic temperature changes, remote locales, and inhospitable landscapes call for more than technological gadgetry to produce even a habitable project. Deserts in particular present challenges that push conventional designs to their limits. When New York firm WORKac began designing a guesthouse in southern Arizona with the goal of being completely off the grid, it looked to the southwest Earthship typology to start. Earthships are passive solar homes that use a combination of natural and upcycled materials embedded in the earth to create a thermal mass that keeps their interiors cool during the day and warm at night. WORKac took some of these concepts and elevated them into a unique architectural form. A simple diagram, the heart of the project is an adobe brick mass, upon which airy living spaces are cantilevered above the ground.

New York–based MOS Architects engaged the desert climate in its Museum of Outdoor Arts Element House. A guesthouse and visitor center for the Star Axis land art project by the artist Charles Ross, the project hovers just above the New Mexico desert on stout concrete piers. The house, designed to be off the grid, is built out of prefabricated structural insulated panels. By distilling the project down to its basic architectural components, a theme among many MOS projects, a clear yet expressive geometric system governs its overall shape. Rather than a central hearth, a series of modules each has its own solar chimney. The result is a naturally lit interior without excessive glazing to increase solar gain. A reflective aluminum shingle cladding counters even more of the sun’s intense rays while also playing visual games with the overall form. Views out of the project are captured through deeply inset operable glass walls at the ends of each module. The only typical sustainable technology visible is a solar array folly, situated just a few yards from the building.

On the other side of the world in another desert climate, Zaha Hadid Architects supersized its sustainable efforts. The King Abdullah Petroleum Studies and Research Center (KAPSARC) was founded in 2010 by its namesake as an independent, nonprofit research institution to investigate the future of energy economics and technology. KAPSARC will bring together researchers and scientists from 20 nations into one planned community in Riyadh, Saudi Arabia. Currently under construction, KAPSARC will become the main building of the campus, while formally being a campus within itself. An aggregation of six-sided plant-cell-shaped spaces, the project is a series of conditioned and unconditioned laboratories, conference rooms, lecture halls, and courtyards. Thanks to the office’s mastery of parametricism, angles, openings, and surfaces are cleverly utilized to manipulate sunlight, blocking it or allowing it into the advantage of the occupants. The modules also permit future expansion while maintaining the overall form and performance. The complex interlocking forms, and green-water-filled courtyards passively cooling surrounding spaces, echo traditional Arab courtyards buildings.

While designers strive to capture and control sunlight in the desert, in more northern climates it can be a scarce resource that is protected by code. In a city like Toronto, which averages six months of regular snowfall, new buildings can be required to allow sunlight to hit the sidewalk for portions of the day. For large projects like Bjarke Ingels Group’s (BIG) King Street development, sunlight, views, and greenspace were calculated using the latest in super-computer simulation modeling. Though the pixelated project will resemble the early diagram-driven ones from Ingels’s days with PLOT, such as the Mountain Dwelling project, King Street will be undeniably more complex. Within BIG, a smaller studio called BIG Ideas works in collaboration with Microsoft to develop predictive modeling tools for direct use by the designers. “All of the hill heights are determined by the sun and site,” Jakob Lange, BIG partner, explained. “Big Ideas created a tool for the design team to use to generate the formation of the hills. On the sidewalk, you need at least a certain amount of sunlight. The only way you can do that is to have a machine that can test every point.” The result is a seemingly haphazard stack of blocks that allow copious light and air into each unit and terrace, as well to streets and public courtyards. 

Whether through high-tech computer modeling or low-tech desert vernacular, passive sustainable design is turning a corner. No longer an afterthought, environmental considerations have stopped holding projects visually captive. With improved agency, architects are striking a delicate balance between formal, spatial experience and sustainable considerations.

—Matthew Messner

Envelope

Be aggressive and show off your passive sustainability strategy facade first.

Bates Masi Architects’ Amagansett Dunes home, a modest cottage a few hundred feet from the ocean on the South Shore of Long Island, is covered on its east and west sides with operable glass. Different-sized adjustable openings create a pressure differential that promotes natural ventilation. To modulate light through these surfaces, the firm installed canvas louvers that admit cool breezes in the summer and block cold winds in the winter.

Each tapered louver is cut from one piece of canvas and wrapped around a powdered aluminum frame, its riveted strips slightly twisted to increase their transparency. The canvas pattern, which was developed through several digital and physical models, casts dappled light and dramatic shadows throughout the house and creates a lantern effect at night.

Another dramatic facade is located at Carrier Johnson + Culture’s Point Loma Nazarene University in San Diego. The concrete project has achieved LEED Gold certification through a number of sustainable solutions—from drought-resistant landscaping to smart solar orientation—and is lined with a curved, south-facing stainless-steel screen that reflects solar heat while allowing in natural light. A concrete roof overhang provides additional shading for the building and an adjacent outdoor walkway serves both as a pedestrian connector and a sort of double-layered facade. A new public plaza fronts the other side of the wall.

The wall’s staggered, water-jet-cut steel panels are unique: Each one contains a gap to allow air and views and is connected to a series of steel posts. The screen’s design makes subtle references to the religious campus, employing alpha and omega symbols, images from the cosmos, and other abstract references. “It’s both an art piece and an environmental wall,” Carrier Johnson + Culture’s design principal Ray Varela said.

Halfway around the world in Tehran, Iran, Admun Design and Construction created a memorable brick facade that shields the hot sun, encourages natural ventilation, and provides privacy while allowing limited, interesting patterns of light. Inspired by the surrounding neighborhood buildings and the city’s chaotic skyline, the facade is composed of variously rotated bricks with varied apertures. The openings change size based on the views, sun angles, and external distractions. Mortar was removed by punching the bricks, and the scheme was designed using parametric software. The process was carried out by the builders through a simple coding system. A ledge was placed in the gap between the brick membrane and the outer edge to provide space for flower boxes and to give cleaning access to the windows from outside. Balconies were placed behind the brick facade.

Indeed, low-tech solutions are becoming new again, but with a clever technological twist.

—Sam Lubell

Material

Is it possible for sustainable systems to be both high- and low-tech at the same time? That’s the question architects are answering with a resounding “Yes,” thanks to advanced, but somehow simple, passive strategies that rely on new materials. One of the most publicized solutions is New York–based raad studio’s Lowline Lab, a heavily planted public space—still early in development—that will be located in a historic trolley terminal under the streets of Manhattan’s Lower East Side.

In order to bring natural light into the space, the team is using what they call a “remote skylight,” in which sunlight passes through a glass shield to a parabolic collector, where it’s reflected and gathered at one focal point, then transmitted onto a “solar canopy,” a reflective surface underground. The technology transmits the necessary light wavelengths to enable plants and trees to grow in the underground space. A motorized optical system (likely to be powered by photovoltaics) tracks maximum sunlight throughout the day, and the solar canopy carefully distributes light evenly throughout the space.

Raad principal James Ramsey likened the system, which uses a series of relay lenses and mirrors, to both a telescope and a plumbing system. “You’ve almost treated the light as if you’ve turned it into a liquid,” he said. “It’s only geometry. That kind of simplicity is very efficient, and there’s something elegant about that.” All these technologies, added Ramsey, are still in development, so a specific system has not been finalized. He hopes to have it nailed down in the next couple of years.

French firm studioMilou’s reimagining of the National Gallery in Singapore consists of a roof and “veil” that unite two renovated historic buildings while creating a new courtyard. It’s another passive wonder that draws even, dappled light and keeps the buildings and their new public space cool. It mimics one of the oldest systems in the universe: a tree, with its thousands of branches stemming outward. The veil starts above the existing buildings and swoops down around them, filtering and softening natural light through thousands of laminated fritted glass and perforated aluminum panels, creating a filigree structure that also marks the new main entrance. All is supported by large aluminum columns, which effectively serve as tree trunks.

The goal, the French architects said, is for the roof and veil to resemble a handcrafted rattan tapestry. To execute the simple but complex form, the firm scanned the entire space and created a detailed 3-D model, working the roof and veil into the complex geometries of the space and even adjusting panels to fit and avoid the existing facade cornices. Each aluminum panel (chosen for its light weight and rust resistance) can be removed if maintenance is needed.

Meanwhile, Phoenix-based Wendell Burnette Architects’ (WBA) Desert Courtyard House uses a simple, reductive system to create a memorable space in a Sonoran Desert community near Phoenix while also being naturally sustainable. The house, which wraps around a courtyard containing volcanic rock, Saguaro cacti, and desert trees, is located in a low-lying area. It consists of about eight percent locally sourced cement (constituting the raised base) and 92 percent rammed earth excavated from the site. All of the extracted soil was used for the thick walls—none was taken away from the site and none was imported from elsewhere. The peripheral walls range from 3.5 to 18 inches thick, their high thermal mass keeping the home cool—although air conditioning can be used on particularly hot days. Another natural cooling system is the folded, wood-framed Cor-ten steel roof, which conducts heat up and out, creating a chimney effect.

The heavy, almost cave-like palette continues throughout the house, creating a unique aesthetic that Burnette said “feels ancient, primal, and modern at the same time.” He added, “You experience this as a shelter in a very elemental way.”

—Sam Lubell

For more “Passive Aggressive” articles, explore: Bjarke Ingels Group’s own tech-driven think tank, how WORKac’s Arizona House revives the super sustainable Earthship typologyMOS Architects' Michael Meredith on sustainability, and our brief, unofficial history of recent passive-aggressive design.

Placeholder Alt Text

Colorful “little mountains” highlight Eastern Europe's first children’s museum and science center

The 35,000 sq. ft. building celebrates three artisanal crafts significant in Bulgaria: textiles, wood carving, and glazed ceramics.

Lee H. Skolnick Architecture and Design Partnership has designed a new children’s museum called "Muzeiko" in Bulgaria’s capital city of Sofia to balance complex form, regional relevance, and whimsical fun. Their client, the America for Bulgaria Foundation, wanted international expertise paired with state of the art materials. The architects responded to the geography of the Sofia Valley, a region surrounded by mountain ranges, with abstracted forms referring to the nearby Balkan mountains, triangulated in a "scientific" manner. This thematic element, coined “Little Mountains” by the architect, is composed of a rainscreen assembly consisting of high pressure laminate (HPL) panels with printed graphics clipped onto a wall system framed by a combination of a primary steel framework, and a fiber reinforced concrete shell. The panels are differentiated with color and patterns unique to traditional artisanal Bulgarian crafts. Textiles and embroidery, wood carving, and glazed ceramics were studied by the architects, and reduced into three color-saturated patterns which were ultimately applied to three forms. Another feature of the building is a “super insulated” curtain wall assembly of triple glazed low-e glass, custom built locally by TAL Engineering. The glass panels were some of the largest available in the region at the time, sized at 7’-4” x 10’-10.” A custom ceramic frit pattern, developed by the architects, creates a “cloud-like” effect while establishing view control and addressing solar gain concerns on the south facade. The curtain wall extends beyond the roof to form a parapet guard at the roof deck, where the frit pattern dissolves enough to catch a glimpse of the sky beyond the facade from ground level. Also notable is a custom gray coloration on the mullions, which is the result of numerous mockups studying the least visually distracting color to the overall system.
  • Facade Manufacturer TAL Engineering (building envelope)
  • Architects Lee H. Skolnick Architecture + Design Partnership; A&A Architects (Associate Architect)
  • Facade Installer Bigla III Ltd. (contractor, constr. manager)
  • Facade Consultants TAL Engineering (building envelope)
  • Location Sofia, Bulgaria
  • Date of Completion 2015
  • System rainscreen on steel frame, high performance curtainwall, green roof
  • Products high pressure laminate (HPL) panels with printed media, triple insulated low-e glazing panels with applied ceramic frit
Beyond the curtain wall assembly, notable sustainable features include solar panel array on the south wing, recycled grey water for irrigation, and interpretive sustainable features on display throughout the interior of the building. A key precedent for the project is the University of Mexico City, says Lee Skolnick, FAIA, Principal of LHSA+DP, which has an “incredible facade of mosaic tile.” Skolnick says the project was an attempt at the time to marry modern architecture with cultural significance. "It’s a concept that has been used rarely throughout recent architecture history. 'Interpretive content' on the face of the building is coming back, but it is not universal. We much more often see patterning that is geometric or structural — a geometric blanket that wraps a form. We are looking for something that is more highly specific than that.” At key moments along the building envelope, the colorful “little mountain” forms visually penetrate beyond the curtain wall system into the interior, establishing specialized programmatic spaces such as a gift shop, cafe, eating area, restrooms, and multipurpose workshops. One challenge the design team faced was developing a patterning for the rainscreen panels. They began by considering a variety of materials and fabrication methods available, from ceramic materials, to fabrics, to etched metal panels. Ultimately the architects chose a high pressure laminate (HPL) material for maintenance, manufacturing quality and consistency, detailing control, and lifespan of material. Through a process of "continual sampling, processing, and refining," the architects arrived at a set of patterns which boldy abstract the colors, patterns, and textures of Bulgarian artistry.
Placeholder Alt Text

Product> Interior Glass: Eight new products and their beautiful special effects
Fixed or floating, glass panels can bring color, pattern, texture, and spatial definition to an interior—without impeding the spread of light throughout the space. Used as part of a wayfinding or identity scheme, or simply to introduce a note of artistic distinction, the choices range from traditional cast and mouth-blown design to high-tech fabrications. Lasercut Poured Glass 3Form An interlayer of laser-cut fabric gives these laminated glass panels depth and dimension. Offered in four patterns in over 40 colors. Moonstone Lumicor Composed of glass aggregate that is 98 percent to 100 percent recycled post-industrial or post-consumer content, these panels are LEED eligible. Isola Murano Glass Soli Combining the art of traditional glass blowing with modern technology, these one-of-a-kind panels can be cut to spec or installed as whole pieces. Graph, Alexander Girard Collection Skyline Design One of ten designs in the new Alexander Girard Collection, panels are available in sizes up to 72 inches by 144 inches, in four thicknesses. Patterns are etched or printed in transparent, translucent, or opaque effects. Scrimshaw Pulp Studio Sporting sketchy linear patterns in a freehand technique, this etched mirror glass is suited for hospitality and commercial applications. Creanza Encast, Creanza Interiors Collection Cristacurva Interlayers of fabrics, metallic mesh, and rice paper give this line of laminated glass a natural character. Dichroic Glass Finishes 3M Architectural Markets Glass is easily transformed using this pressure-sensitive, repositionable film. Available in warm and cool color palettes, it is Class A fire-rated. Plank Joel Berman Glass Studio Available in panels up to 58 inches by 110 inches, this kiln-cast glass can be fabricated, tempered, and color-matched to order.
Placeholder Alt Text

Product> Surface Effective: Eight Innovative Cladding Materials & Systems
From enhancing aesthetics with digitally-printed ceramic panels to increasing build-speed via all-in-one insulated metal panel systems, these innovative building products offer specialized facade solutions to architects. ClearShade Insulated Glass Panel Panelite A glazing solution that optimizes both daylight and solar heat control, its honeycomb insert is offered in a range of colors and patterns; customization is available. Dekton Cosentino Available in sheets up to 126 by 56 inches and thicknesses of 8, 12, and 20 millimeters, this ultra-compacted material has a high compressive strength, is non-porous, and UV resistant. In ten colors and textures. Dot-to-Dot Tagina The system is based on three-dimensional ceramic modules that function as pixels when mounted to an exterior facade. Consulting with the manufacturer, designers can create their own limited edition glazed porcelain tiles for ventilated facades or other architectural coverings. Benchmark Kingspan A single package system that combines the energy efficiency of IMPs with a proprietary carrier panel system that accommodates many cladding options, including aluminum composite material, metal composite material, ceramic granite, thin brick, plate, high pressure laminate, and ceramic tile. Renewall Lamboo Laminated bamboo elements are up to 20 percent more stable than hardwoods, while milling, sanding, and finishing using conventional machinery. Its naturally occurring silica content resists insects and fungal agents. LEED eligible. Hashtag Cambridge Architectural In panels up to 96 inches wide, the flattened surface area of this rigid stainless steel mesh boosts reflectivity. Produced from 100 percent recycled materials, it is LEED eligible. Lea Lab Lea Ceramiche Architects can create their own custom cladding imagery on ultra-thin, oversized ceramic panels using the Lea Lab digital printing technology. Upload high-resolution files, specify the panel size, and the manufacturing process is initiated. Baltic GKD Metal Fabrics With a range of visible light transmittance from .28 to .42 and a solar gain coefficient of between .20 and .29, this metal fabric makes an effective sunshade.
Placeholder Alt Text

Product> Master Glass Solutions for Interiors and Facades
As the buzzword "transparency" gains greater meaning in product specification, glass is an energy-saving, sustainable, and aesthetically pleasing option. Strand 3form 3form’s Pressed Glass is newly available in the Strand pattern (above), a compressed interlayer of fine gauge threads in three monochromatic colorways. It can be further customized through color matching, etching, and fritting options. Available in widths as large as 
48 inches and lengths of 120 inches, it can be specified in either a 5/16-inch or 1 5/16-inch gauge thickness. Its inherent strength meets ANSI Z97.1 standards. DF-PA Dichroic Film 3M Architectural Markets 3M’s Dichroic films can be applied to any smooth surface with a pressure sensitive adhesive; the DF-PA is recommended for glass applications. Two color values—Chill and Blaze—span color ranges from blue to magenta to gold, in either a fully covered opacity, or as a decorative graphic. Durability complies with interior and exterior use, and the film can be easily removed from architectural screens, window fronts, curtain walls, or glazing when it is time for an update. Railings and Floors CARVART This structural laminated glass can be safely specified for floors and railings. Flooring can be installed as a freestanding finish or incorporated into another system with specially engineered mounting hardware, and stair treads can appear to “float” or integrate into stringers. For railings, top and side mounting options can be affixed to most structures, or can be suspended from coordinating adjustable point fittings. Railing caps are available in round, oval, or square profiles. Alice General Glass Digital printing directly to glass provides customization options as broad as the imagination of the architect or designer. Bespoke patterns or imagery can be specified, in addition to a selection of bright and monochromatic colors and patterns for glazing, curtain walls, or interior applications. Fully opaque backing is also available, enhancing the contrast and crispness of any printed design. SunGuard Super Neutral 68 Triple Glaze Guardian Industries Guardian SunGuard SuperNeutral 68 glazing offers improved solar control and abundant natural light. The Valley View project shown here uses SunGuard SN 68 triple glaze, providing a visible light transmission of 52 percent and a solar heat gain coefficient of 0.32. SunGuard SN 68 can also be laminated for noise reduction and hurricane protection. KnollTextiles Glass Collection Skyline Design Seven designs from KnollTextiles are rendered on glass through two production techniques:
Eco-etch achieves varying levels of opacity, and AST Digital Glass Printing introduces color to partial transparency. These options provide for customization of classic patterns 
like Divine and Enchantment, designed by Dorothy Cosonas, or the mid-century Cyclone and Fibra, designed by Eszter Haraszty. Liquidkristal Lasvit Designed by Ross Lovegrove, Liquidkristal was inspired by dynamic forms found in nature. The design was first modeled digitally to simulate thermo induction, which can imbue the qualities of water to glass under very high temperatures. A large-scale mold system was formed from the study’s results, to produce multiple pattern variations over multiple sheets. In addition to interior applications, Liquidkristal is also suitable for glazing and facades. Olivia Joel Berman Glass Studios The circular, three-dimensional pattern of Olivia is enhanced with subtle reflectivity to inflect motion into any space. Back painting options are available in a range of colors on panels measuring 53 by 108 inches. Produced for interior applications, it can be tempered for safety and impact resistance on exteriors as well. ClearShade Glazing Unit Panelite A honeycomb-like insert fits between two sheets of glass and redirects up to 70 
percent of natural light, reducing solar glare and heat gain for midday-SHGC measurements 
as low as 0.11. The cellular configuration is made from a durable but transparent polymer that is resistant to UV rays. The product’s bi-directional scattering distribution capabilities are compatible with Radiance, Energy Plus, and SketchUp modeling programs. Sungate 600 PPG This double-glazed insulated glass unit boasts an efficient configuration tailored to the region of application. In climates where heat gain is optimal, coating on the Number 3 
surface blocks heat loss for a U-value of 0.33, while maintaining a 0.65 SHGC and visible light transmittance of 71 percent. For higher insulation values, the Sungate 600 coating can be placed on the Number 4 surface when combined with a solar control low-e glass, for a net gain in U-value of 20 percent. SageGlass Simplicity Sage Electrochromics This electronically tintable glazing is available in a solar-powered, wireless format. In lieu of low-voltage wired connections, a strip of solar photovoltaics interfaces with a low-profile electronic controller and battery pack that can provide power for up to two days without a charge. The wireless system also configures with light and building management programs from Siemens, Lutron, Schneider, and Johnson Controls. Bistro Green Vetrazzo Vetrazzo, the recycled glass division of Polycor, has been diverting glass from the waste stream since 1996. The surfacing material uses consumer beverage containers, waste from glass manufacturers, building demolition, traffic light lenses, windshields, shower doors, and more. It takes nearly 1,000 bottles to make one 5- by 9-foot panel that is 85 percent glass by volume and bound with Portland Cement. Sixteen of Vetrazzo’s product lines are Cradle to Cradle certified. Dynamic Glass View Glass Insulated glass units as large as 5 feet by 10 feet feature programmable electrochromic levels of 60, 40, 20, and 4 percent tinting with user controls from a smart device app to reduce heating and cooling loads, electric lighting, and solar glare. An intelligent setting can be programmed for sensory occupancy to optimize energy usage as well as user comfort. All four tint levels can be achieved in one unit, with adjustment times akin to the passing of a cloud overhead.
Placeholder Alt Text

Timber Towers
Courtesy MGA

Concrete and steel enabled the advent of the skyscraper, and in just about a century they helped that form reach mountainous heights. But these materials have an environmental impact that can’t be ignored. That fact is driving a new generation of designers to reconsider wood.

Concrete and steel production is responsible for about 8 percent of the world’s emissions of carbon dioxide, the greenhouse gas mainly to blame for climate change. The majority of both materials go to fuel the construction boom in China, which nearly doubled its use of steel in the last ten years.

Courtesy MGA
 

Asia’s ongoing building boom is mostly in response to the extreme demand for housing created by its growing and rapidly urbanizing population. More than a billion people will move or be born into Asian cities in the next 20 years. Billions more are already homeless or living in slums. While the density of high-rise living cuts down on transportation and energy emissions, the carbon content of concrete and steel somewhat tempers the savings.

Looking at a California redwood, which can stand nearly 40 stories tall, it is not hard to imagine a wood structure reaching such heights. And its carbon profile is not just less than competing materials; it is potentially carbon negative. As the poet Bill Yakes wrote, “Trees are our lungs turned inside out.” That is, they grow by drinking up carbon dioxide, exhaling oxygen in return. Every cubic meter of wood stores more than three quarters of a ton of carbon.

Top and Above: Michael Green Architect designed the all timber Wood Innovation Design Center with a charred wood facade. It uses cross-laminated timber and is designed for possible future expansion.
Courtesy MGA
 

Canadian firm Michael Green Architecture just broke ground on what, at seven stories with plans to expand to 20, will be the tallest wood building in North America. Designers in Europe and Australia have also gone above wood’s traditional three- or four-story limits. But in the U.S.—where code constraints, economics, and a social stigma prevent construction—the idea has been slower to catch on.

Since they helped set off a flurry of interest in the topic of tall wood construction about ten years ago, a pioneering few designers and engineers have seized on the potential of manufacturing breakthroughs to give one of the world’s oldest construction materials new life. They say urbanization, population, and climate change are on course for a head-on collision that architects have a responsibility to help avert, and wood construction is how.

Whitmore Road, a multi-story project also using cross-laminated timber, was designed by Waugh Thistelton.
Courtesy Waugh Thistleton
 

Seeds to buildings

When British architects Waugh Thistleton set out to build the Stadthaus building, now called the Graphite Apartments, in the east London borough of Hackney, they weren’t stacking two-by-fours.

Apart from a reinforced concrete plinth and fiber-cement facade panels, the entire building is made from cross-laminated timber (CLT). Essentially huge wood sections that behave like shear walls, CLT panels were the first in a series of material advances that opened up design possibilities for tall timber. Manufacturers like KLH Massivholz in Austria, where 80 percent of CLT is still made, pile up sheets of wood at 90-degree angels and paste or glue them together into something resembling a jumbo piece of plywood.

“Our biggest job talking to code officials and the fire department was making sure they distinguished between stick-frame and CLT,” said principal Andrew Waugh. “You’re dealing with a more solid robust material. With a stick-frame system you’re relying on the guy on site.”

CLT is assembled in the factory, which cuts down on construction errors and time. The Graphite Apartments, a nine-story mixed-use building, was built in just under one year—months less than expected.

   
The Whitmore Road Project.
Courtesy Waugh Thistleton
 

A layer of drywall over the thick CLT panels helped the structure earn a fire resistance rating between 60 and 90 minutes, passing code. Heavy timber and cross-laminated timber actually have built-in fire protection; dense wood will burn slowly, charring instead of catching fire all at once. Part of bringing a wood building up to code is providing enough wood so that even after fire produces a “char layer,” there is still enough left to support the structure.

On Green’s forthcoming Wood Innovation Design Center in Vancouver, a pre-charred cedar exterior dramatically improved its fire rating.

Acoustics, another traditional failing of wood construction, is also heartier in CLT towers. An air gap, compressed insulation, and a floor slab totaling about 14 inches overall helped the Graphite Apartments meet stringent UK acoustics requirements.

CLT is not produced in the U.S., nor are newer iterations of high-rise-ready timber panels, like laminated strand lumber (LSL) or laminated veneer lumber (LVL). But as more high-rises are built with wood, Waugh hopes his firm will find a U.S. client.

“The more you build with timber, the more you realize how steeped in concrete we really are,” he said. “It’s still a relatively conservative industry, the construction industry, but when contractors build one they want to build more.”

Waugh built his own CLT home with three friends. He said the wood imparts an emotional value. “It’s a beautiful place to live. You know you’re living in a space captured by a natural material.”

A proposal for a 34-story residential tower for Stockholm by Berg | C.F. Møller Architects and Dinell Johansson.
Courtesy BERG | C.F. Møller Architects and Dinell Johansson
 

Timber towers

Michael Green, Waugh Thistleton, and several European firms—Berg | C.F. Møller Architects and Dinell Johansson have proposed a 34-story “ultra-modern residential high-rise building” for Stockholm—are the face of the timber tower movement, but they recently added a company from the old guard of skyscraper design to their ranks: Skidmore, Owings & Merrill.

When SOM engineers first floated the idea of a 20-story wood tower, one partner’s response wasn’t the skepticism one might expect from a master of steel-and-concrete structural systems. “Do 30,” he reportedly told them.

“It’s a high standard. We wanted to set a high benchmark,” SOM’s Bill Baker told AN. They chose the 1965 DeWitt-Chestnut Apartment Building in Chicago as their standard, the first building in the world to use the “framed tube” structural system devised by SOM engineer Fazlur Khan.

 
Courtesy BERG | C.F. Møller Architects and Dinell Johansson
 

“We wanted to show not just that it was possible,” said SOM’s Benton Johnson, “but make it competitive with concrete.”

The prototype isn’t pure wood. A concrete core and joints mean the system uses about one quarter as much concrete as the actual Dewitt-Chestnut. Structural steel anchors the building at its base, using about 15 percent as much steel as a typical composite system.

SOM’s report examined five schemes with varying amounts of timber, steel, and concrete, trying to replicate the landmark building’s structure. They focused on reducing the weight of the floors, where most of the material weight is contained. Wood high-rises already built in Europe, such as the Graphite Apartments in London, use a lot of load-bearing walls to hold up the structure. But that would limit the building owner’s options for renters, Johnson said, as would the immovable columns placed throughout.

The architects believe that all wood interiors are more inviting than those in similar steel and concrete structures.
Courtesy BERG | C.F. Møller Architects and Dinell Johansson
 

To make the Dewitt-Chestnut system work without drastically shrinking the floorplate or beefing up the structural system, SOM zeroed in on what engineers call the boundary condition—its mathematical pressure point. To illustrate, Johnson built two stacks of tile samples and placed a ruler on top to span the distance between. He balanced a can of soda water on the ruler, the building’s floor in this example. The ruler bowed beneath its weight, but its edges also flared up, making a slight u-shape. But with a few more tiles placed on each stack to pin down the ruler, it held its shape.

In his example, the ruler is a solid timber floor, while the tile stacks are reinforced concrete wall joints and beams. Without concrete, SOM’s engineers determined the Dewitt-Chestnut would need custom 13.5-inch CLT panels to support the floorplate’s core-to-window span. That would be too expensive and would use more material in just the floors than the whole of the original building.

“It just started solving all these problems for us,” Johnson said. “You have the concrete to hold it all together—basically all this timber coming together and concrete sealing it at the joints.”

It would take about 12 million cubic yards of timber to build, the report estimated—less than one-hundredth of one percent of the annual North American timber harvest.

 
SOM’s proposal for a 40-story timber tower with a concrete core is based on a structural system designed by Fazlur Kahn in 1965.
Courtesy SOM
 

Scaling back

Even if engineers can solve these problems, there is still a stigma involved with tall wood structures. Antony Wood, executive director of the Council on Tall Buildings and Urban Habitat, counted timber towers among the “quiet revolutions” happening in tall building design.

“I think the fear of timber is that it’s an organic material,” he said. “It’s not manufactured to provide a structural member like steel or concrete is.”

Wood rots, so it must be kept out of the rain. SOM’s system swaps wood for a steel frame at the building’s base to prevent water damage during flooding.

Courtesy SOM
 

Most critics worry about fire. Tall timber skeptics seized on a structural fire at the job site of a six-story wood building in Richmond, British Columbia, in 2011. In the city just south of Vancouver, what would have been the first wood-frame six-story building in Canada burned to the ground on May 3. Steel companies were quick to blame the wood frame’s flammability. But Canadian Wood Council President Michael Giroux pushed back, noting the construction team hadn’t yet installed safety features, including fire sprinklers.

“To suggest that the outcome of the May 3 fire at the Remy project in Richmond would have been the same if the building had been fully completed, is not plausible,” he wrote.

Even tall timber’s champions concede the material isn’t suitable for super-tall buildings. But they say building codes, which in many places restrict wood to only low-rise construction, isn’t up to date with structural engineering advancements.

“It’s time to reconvene and reconsider what we’re doing,” Waugh said. “We need to densify our cities to leave ground for agriculture and wildlife. Condensed cities are much more efficient places. But I don’t think these Babel-sized towers are the way.”

And some go as far as to say the threat of climate change means wood high-rises are our only choice.

Wood world

In 2009, the government of British Columbia endorsed a “culture of wood,” requiring designers of public buildings to prove they can not use wood before considering other materials. With millions of acres of forests in the U.S. and Canada devastated by mountain pine beetles, it was a prudent move for a province home to one of the world’s busiest forestry sectors.

But if wood construction is going to take off on the scale envisioned by its pioneering architects, Michael Green said, the “wood first” policy will have to become “carbon first.”

“We need to create incentives around climate change instead of seeing it all as a hindrance,” he told AN. “Let all industries benefit—it allows the concrete and steel industries to make their case. By no means is one exclusive of the other. Let’s use all materials where it’s most appropriate.”

While at MGB (mcfarlane green biggar ARCHITECTURE + DESIGN), Green released an open source platform for wood tower construction—a structural system to engineer tall buildings 12, 20, or 30 stories high. Several iterations later, his wood-based structural systems have started a conversation in Vancouver, where he is based.

Green said the warmth of wood interiors and scaling back the height of buildings could help solve another problem of modern high-rise construction: social sustainability. Whereas many residential skyscrapers are isolating, new typologies developed with wood in mind—not traditional forms grafted onto wood frames—could change the mindset.

As with British Columbia’s “wood first” policy, the UK’s performance-based code has created an opportunity for timber construction, while U.S. code remains constrictive. But it wasn’t novelty that ultimately built Waugh Thistleton’s Graphite Apartments. At a cost of about $2,200 per square foot, the building was 15 percent cheaper than if it had been made from concrete.

By 2050, concrete use is predicted to reach four times its 1990 level. And production of steel and concrete are on track to balloon, eclipsing advances in recycling and materials science that could shrink their carbon footprints.

“We need to really hit reboot on how we build environments,” Green said. “As architects we owe it to ourselves to push these boundaries.”

Timber Towers

Structural engineers are exploring an unexpected material for high-rise construction, one that may have significant environmental benefits: wood
Concrete and steel enabled the advent of the skyscraper, and in just about a century they helped that form reach mountainous heights. But these materials have an environmental impact that can’t be ignored. That fact is driving a new generation of designers to reconsider wood. Concrete and steel production is responsible for about 8 percent of the world’s emissions of carbon dioxide, the greenhouse gas mainly to blame for climate change. The majority of both materials go to fuel the construction boom in China, which nearly doubled its use of steel in the last ten years. Asia’s ongoing building boom is mostly in response to the extreme demand for housing created by its growing and rapidly urbanizing population. More than a billion people will move or be born into Asian cities in the next 20 years. Billions more are already homeless or living in slums. While the density of high-rise living cuts down on transportation and energy emissions, that’s at odds with the carbon content of its two favorite materials. Looking at a California redwood, which can stand nearly 40 stories tall, it’s not hard to imagine a wood structure reaching such heights. And its carbon profile isn’t just less than competing materials; it is potentially carbon negative. As the poet Bill Yakes wrote, “Trees are our lungs turned inside out.” That is, they grow by drinking up carbon dioxide, exhaling oxygen in return. Every cubic meter of wood stores more than three quarters of a ton of carbon. Canadian firm Michael Green Architecture just broke ground on what will be the tallest wood building in North America. Designers in Europe and Australia have also gone above wood’s traditional three- or four-story limits. But in the U.S.—where code constraints, economics, and a social stigma prevent construction—the idea has been slower to catch on. Since they helped set off a flurry of interest in the topic of tall wood construction about ten years ago, a pioneering few designers and engineers have seized on the potential of manufacturing breakthroughs to give one of the world’s oldest construction materials new life. They say urbanization, population, and climate change are on course for a head-on collision that architects have a responsibility to help avert, and wood construction is how.   Seeds to buildings When British architects Waugh Thistleton set out to the build the Stadthaus building, now called the Graphite Apartments, in the east London borough of Hackney, they weren’t stacking two-by-fours. Apart from a reinforced concrete plinth and fiber-cement facade panels, the entire building is made from cross-laminated timber (CLT). Essentially huge wood sections that behave like shear walls, CLT panels were the first in a series of material advances that opened up design possibilities for tall timber. Manufacturers like KLH Massivholz GmbH in Austria, where 80 percent of CLT is still made, pile up sheets of wood at 90-degree angels and paste or glue them together into something resembling a jumbo piece of plywood. “Our biggest job talking to code officials and the fire department was making sure they distinguished between stick-frame and CLT,” said principal Andrew Waugh. “You’re dealing with a more solid robust material. With a stick-frame system you’re relying on the guy on site.” CLT is assembled off-site, which cuts down on construction errors and time. The Graphite Apartments, a nine-story mixed-use building, was built in just under one year—months less than expected. A layer of drywall over the thick CLT panels helped the structure earn a fire resistance rating between 60 and 90 minutes, passing code. Heavy timber and cross-laminated timber actually have built-in fire protection; dense wood will burn slowly, charring instead of catching fire all at once. Part of bringing a wood building up to code is providing enough wood so that even after fire produces a “char layer,” there is still enough left to support the structure. On Green’s forthcoming Wood Innovation Design Center in Vancouver, a pre-charred cedar exterior dramatically improved its fire rating. Acoustics, another traditional failing of wood construction, is also heartier in CLT towers. An air gap, compressed insulation, and a floor slab totaling about 14 inches overall helped the Graphite Apartments meet stringent UK acoustics requirements. CLT is not produced in the U.S., nor are newer iterations of high-rise-ready timber panels, like laminated strand lumber (LSL) or laminated veneer lumber (LVL). But as more high-rises are built with wood, Waugh hopes his firm will find a U.S. client. “The more you build with timber, the more you realize how steeped in concrete we really are,” he said. “It’s still a relatively conservative industry, the construction industry, but when contractors build one they want to build more.” Waugh built his own CLT home with three friends. He said the wood imparts an emotional value. “It’s a beautiful place to live. You know you’re living in a space captured by a natural material.”   Timber towers Michael Green, Waugh Thistleton, and several European firms—Berg | C.F. Møller Architects and Dinell Johansson have proposed a 34-story "ultra-modern residential high-rise building" for Stockholm—are the face of the timber tower movement, but they recently added a company from the old guard of skyscraper design to their ranks: Skidmore, Owings & Merrill. When SOM engineers first floated the idea of a 20-story wood tower, one partner’s response wasn’t the skepticism one might expect from a master of steel-and-concrete structural systems. “Do 30,” he reportedly told them. “It’s a high standard. We wanted to set a high benchmark,” SOM’s Bill Baker told AN. They chose the 1965 DeWitt-Chestnut Apartment Building in Chicago as their standard, the first building in the world to use the “framed tube” structural system devised by SOM engineer Fazlur Khan. “We wanted to show not just that it was possible,” said SOM’s Benton Johnson, “but make it competitive with concrete.” The prototype isn’t pure wood. A concrete core and joints mean the system uses about one quarter as much concrete as the actual Dewitt-Chestnut. Structural steel anchors the building at its base, using about 15 percent as much steel as a typical composite system. SOM’s report examined five schemes with varying amounts of timber, steel, and concrete, trying to replicate the landmark building’s structure. They focused on reducing the weight of the floors, where most of the material weight is contained. Wood high-rises already built in Europe, such as the Graphite Apartments in London, use a lot of load-bearing walls to hold up the structure. But that would limit the building owner’s options for renters, Johnson said, as would the immovable columns placed throughout. To make the Dewitt-Chestnut system work without drastically shrinking the floorplate or beefing up the structural system, SOM zeroed in on what engineers call the boundary condition—its mathematical pressure point. To illustrate, Johnson built two stacks of tile samples and placed a ruler on top to span the distance between. He balanced a can of La Croix water on the ruler, the building’s floor in this example. The ruler bowed beneath its weight, but its edges also flared up, making a slight u-shape. But with a few more tiles placed on each stack to pin down the ruler, it held its shape. In his example, the ruler is a solid timber floor, while the tile stacks are reinforced concrete wall joints and beams. Without concrete, SOM’s engineers determined the Dewitt-Chestnut would need custom 13.5-inch CLT panels to support the floorplate’s core-to-window span. That would be too expensive and would use more material in just the floors than the whole of the original building. “It just started solving all these problems for us,” Johnson said. “You have the concrete to hold it all together—basically all this timber coming together and concrete sealing it at the joints.” It would take about 12 million cubic yards of timber to build, the report estimated—less than one-hundredth of one percent of the annual North American timber harvest.   Scaling back Even if engineers can solve these problems, there is still a stigma involved with tall wood structures. Antony Wood, executive director of the Council on Tall Buildings and Urban Habitat, counted timber towers among the “quiet revolutions” happening in tall building design. “I think the fear of timber is that it’s an organic material,” he said. “It’s not manufactured to provide a structural member like steel or concrete is.” Wood rots, so it must be kept out of the rain. SOM’s system swaps wood for a steel frame at the building’s base to prevent water damage during flooding. Most critics worry about fire. Tall timber skeptics seized on a structural fire at the job site of a six-story wood building in Richmond, British Columbia, in 2011. In the city just south of Vancouver, what would have been the first wood-frame six-story building in Canada burned to the ground on May 3. Steel companies were quick to blame the wood frame’s flammability. But Canadian Wood Council President Michael Giroux pushed back, noting the construction team hadn’t yet installed safety features, including fire sprinklers. “To suggest that the outcome of the May 3 fire at the Remy project in Richmond would have been the same if the building had been fully completed, is not plausible,” he wrote. Even tall timber’s champions concede the material isn’t suitable for super-tall buildings. But they say building codes, which in many places restrict wood to only low-rise construction, isn’t up to date with structural engineering advancements. “It’s time to reconvene and reconsider what we’re doing,” Waugh said. “We need to densify our cities to leave ground for agriculture and wildlife. Condensed cities are much more efficient places. But I don’t think these Babel-sized towers are the way.” And some go as far as to say the threat of climate change means wood high-rises are our only choice.   Wood world In 2009, the government of British Columbia endorsed a “culture of wood” requiring designers of public buildings to prove they can not use wood before considering other materials. With millions of acres of forests in the U.S. and Canada devastated by mountain pine beetles, it was a prudent move for a province home to one of the world’s busiest forestry sectors. But if wood construction is going to take off on the scale envisioned by its pioneering architects, Michael Green said, the “wood first” policy will have to become “carbon first.” “We need to create incentives around climate change instead of seeing it all as a hindrance,” he told AN. “Let all industries benefit—it allows the concrete and steel industries to make their case. By no means is one exclusive of the other. Let’s use all materials where it’s most appropriate.” While at MGB (mcfarlane green biggar ARCHITECTURE + DESIGN), Green released an open source platform for wood tower construction—a structural system to engineer tall buildings 12, 20, or 30 stories high. Several iterations later, his wood-based structural systems have started a conversation in Vancouver, where he is based. Green said the warmth of wood interiors and buildings’ retreat from airplane-scale heights could help solve another problem of modern high-rise construction: social sustainability. Whereas many residential skyscrapers are isolating, new typologies developed with wood in mind—not traditional forms grafted onto wood frames—could change the mindset. As with British Columbia’s “wood first” policy, the UK’s performance-based code has created an opportunity for timber construction, while U.S. code remains constrictive. But it wasn’t novelty that ultimately built Waugh Thistleton’s Graphite Apartments. At a cost of about $2,200 per square foot, the building was 15 percent cheaper than if it had been made from concrete. By 2050, concrete use is predicted to reach four times its 1990 level. And production of steel and concrete are on track to balloon, eclipsing advances in recycling and materials science that could shrink their carbon footprints. “We need to really hit reboot on how we build environments,” Green said. “As architects we owe it to ourselves to push these boundaries.”
Placeholder Alt Text

Product> Can Touch This: Coverings and Surfaces
From floor to ceiling, and all planes in between, these interior surfacing solutions are durable and work across a variety of applications. I Frammenti Brix This micro mosaic of 2,304, 5-millimeter-square ceramic blocks on a 12- by 12-inch sheet of fine mesh provides a full range of flexibility, perfect for finishing curved or irregular walls. Available in both glossy and matte treatments, I Frammenti comes in mixed colors of sand, gray, and black; blue, white, and azure; white, gray, and black; white, sand, and black; and blue, gray, and azure. DI-NOC 3M Architectural Markets The color and texture of a naturally unwieldy material can be applied to irregular or gravity-defying surfaces with an 8-millimeter architectural vinyl film from 3M (above). The lightweight material comes in rolls for a smooth application and can be heat-stretched over corners and sharp edges for a monolithic look. It comes in more than 500 patterns and textures, thanks to a combination of digital printing and embossing techniques. Pyne Arborite A bold, graphic faux bois is rendered on high-pressure laminate for Pyne, one of three patterns in the INK series. Designed by Giona Maiarelli, the pattern is a wink to his Italian view of 1960s America, refined by years of graphic work for the likes of Milton Glaser and Harper’s Bazaar. The product comes in 4- by 8-foot panels and is available in inverse combinations of Purple and Orange. Biobased Xorel Carnegie Seven years of research went into reimagining the Xorel line of wall coverings and upholstery fabric—traditionally a petroleum-based product—in sugar cane. The U.S. government grants a bio-based label to any product with at least 25 percent biomaterial, but Xorel is composed of between 60 and 80 percent sugar. Ninety-one colors are available in three existing and three new patterns. SilentMesh GKD Metal Fabrics GKD has developed a ceiling solution from its line of metal fabrics. The multi-layered system features a lightweight aluminum honeycomb core that is stable, sound absorbing, and maintains strong architectural edges and finishing details. While large-format panels are compatible with the drop ceiling framework prevalent in North America, it also comes with a custom T-grid suspension system for clean, flush seams that conceal traditional joints. Deconstructed Patcraft Deconstructed embraces the foundation of carpet. It integrates the backing of either a modular or broadloom format into the face of the floor covering. Monochromatic thread fibers at varying heights are variegated by exposing the matrix pad for pops of color and texture. The product is material efficient, lightweight, and soft. All components are 100 percent recyclable and Cradle-to-Cradle certified. Krion Porcelanosa Aluminum trihydride and highly resistant resins form an antibacterial and durable surfacing material that is highly resistant to UV radiation, fire damage, staining, and extreme environmental exposure. It can be cut similar to wood or marble, scored for dramatic backlighting, and thermoformed for seamless corners and irregular shapes. Warm to the touch, Krion is available in nearly 50 colors and styles, including a white that boasts more than 99.8 percent purity. Maglia Pulp Studio To achieve a smoother surface than traditional woven metal materials with additional sound-blocking capabilities, Pulp Studio developed Maglia, a laminated glass sheet embedded with architectural mesh for interior applications. Low-iron glass highlights metallic details in both annealed and tempered formats while complying with Category I and II of the Consumer Product Safety Commission standards. Any of Pulp Studio’s meshes are available and custom weaves can also be specified.